Spring 2002 AERSP 497F / 597F

ADVANCED COMPOSITE STRUCTURES

MWF 12:20 – 1:10 217 Hammond
Schedule No. 901431

Goals
To survey and critically examine topics related to the design, analysis, and
testing of advanced composite structures for aerospace vehicles. Key general
topics include structural design issues, mechanics of laminated structures, and
energy methods.

To prepare students for advanced study in areas such as aeroelasticity, elastic
tailoring, and controlled structures.

Instructor Prof. George A. Lesieutre g-lesieutre@psu.edu
 153D Hammond 863-0103
 Office Hours: TBD

Text Gibson, Ronald F., Principles of Composite Material Mechanics,

Prerequisites EMCH 471 (Engineering composite materials)
 AERSP 302 (Aerospace structures II)

Topical Outline

Introduction Kinds of composite structures; behaviors of interest; design issues
 Materials selection and design

Review Fiber and matrix materials; lamina micromechanics
 Orthotropic and transversely-isotropic materials
 Ply failure criteria; hygrothermal effects
 Material property characterization
 Classical lamination theory (A, B, D matrices)

Laminated Plates Rectangular plates with different boundary conditions
 Static response, elastic stability, natural vibration and damping
 Point stress analysis
 Energy methods and finite element analysis

Reinforced Shells Reinforced skins; sandwich structures
 Transverse shear and normal deformation, higher-order theories
 Static response, elastic stability, natural vibration and damping
 Behavior of circular cylinders

Thin-Walled Beams; cylindrical bending; closed section beams
Composite Beams Elastic tailoring; non-classical effects
 Static response, elastic stability, natural vibration and damping

Special Topics Manufacturing considerations; joining; impact tolerance; structural integrity;
 inspection; repair; controlled structures; damping.

Grading
Problems 35% Project 20% Participation 5%
Midterm 20% Final Exam 20%