Notes for **Tuesday, February 17, 2004**

Announcements

Test will be held during lab hours tomorrow afternoon.
- Can go longer than regular lab period, if needed.
- Bring a study sheet: 2 sides, write anything you want. Calculators are essential.

Reading assignment for Thursday: Read Chapter 8.
- No Study Questions

Continue with Forest Value...

Example
- Review cutting immediately
- What if we wait to harvest?

The Forest Value Formula

Separating the Value of the Land and the Value of the Timber
Forest Value – Waiting to Harvest

Example: Waiting to Harvest

In the previous example, perhaps the stand should not be harvested immediately.

- Consider waiting 10 years to harvest the stand.
- You estimate that the stand volume would increase to
 - 24 mbf of sawtimber and
 - 12 cords of pulpwood per acre.

L Should you let the stand grow for another 10 years?

L What is the forest value in this case?
Forest Value – Waiting to Harvest

The present value of the first harvest

L In ten years, you will be able to sell the timber for:

\[
Timber\ value = \sum_{p=1}^{2} P_p Y_{p,10}
\]

\[
= \$325/mbf \times 24mbf + \$7/cd \times 12cd
\]

\[
= \$7,884
\]

L Of course, you have to wait ten years before you can realize this timber value.

L So this value needs to be discounted:

\[
PV_{Timber} = \frac{\$7,884}{(1.05)^{10}} = \$4,840.09
\]
Forest Value – Waiting to Harvest

Costs that occur before the next harvest

L Taxes will have to be paid on the property over the next ten years.

L To account for this, subtract the present value of ten annual tax payments:

\[
P_{\text{taxes}} = \frac{5[(1.05)^{10} - 1]}{0.05(1.05)^{10}} = 38.61
\]

L Thus, the net present value for the remainder of the current rotation is $4,801.48. ($4,840.09 - $38.61)
Forest Value – Waiting to Harvest

Accounting for future rotations

L After clearcutting in ten years, you will have bare land.

L The LEV calculated earlier indicates that the value of this bare land will be $169.42.
- This gives the discounted value of all of the future rotations on the site.

L But it is a future value that occurs in ten years.
- The future rotations won’t start for another ten years.

L The bare land value (LEV) must also be discounted for ten years before it is added to the present value of the current rotation:

\[PV_{LEV} = \frac{169.42}{(1.05)^{10}} = 104.01 \]
Forest Value – Waiting to Harvest

L The Forest Value when the harvest is delayed is:
the present value of the current rotation
plus...
the present value of all future rotations.

L Thus, the Forest Value when the harvest is delayed for 10 years is $4,905.49.

\[\text{\$4,801.48 + \$104.01} \]

L Compare this with the Forest Value if the tract is harvested now — $6,117.42.

L You would lose $1,211.93 per acre if you delay harvesting the stand for ten years.
The Forest Value Formula

First, some new notation:

\[T_0 = \text{the time when the current stand is to be harvested}, \]
\[Y_{p, T_0}^C = \text{the expected yield of product } p \text{ from the current stand at time } T_0, \text{ and} \]
\[C_h^C = \text{the cost of selling the current stand of timber}. \]

The formula for the Forest Value for a stand that will be harvested in \(T_0 \) years is:

\[
Forest\ Value = \frac{\sum_{p=1}^{n} P_p Y_{p, T_0}^C - C_h^C}{(1 + r)^{T_0}} + \frac{A[(1 + r)^{T_0} - 1]}{r(1 + r)^{T_0}} + \frac{LEV}{(1 + r)^{T_0}}
\]

If a stand is going to be harvested right now (i.e., if \(T_0 = 0 \)), then the above formula simplifies to:

\[
Forest\ Value = \sum_{p=1}^{n} P_p Y_{p, 0}^C - C_h + LEV
\]

In this case, the Forest Value is just the liquidation value of the timber plus the LEV.
Separating the Value of the Land and the Timber

Unless the assumptions of the LEV do not apply,

L The value of the land is always equal to the LEV.

Since the Forest Value gives the value of the land and the timber,

L Timber Value / Forest Value - LEV

That is,

\[
Timber\ value = \sum_{p=1}^{n} P_p Y_{p,T_0}^{C} - C_h^{C} - \frac{A[(1 + r)^{T_0} - 1]}{r(1 + r)^{T_0}} + \frac{LEV}{(1 + r)^{T_0}} - LEV
\]

This expression can be re-arranged as:

\[
Timber\ value = \sum_{p=1}^{n} P_p Y_{p,T_0}^{C} - C_h^{C} - \frac{(r \cdot LEV - A)[(1 + r)^{T_0} - 1]}{r(1 + r)^{T_0}}
\]

The two parts of this expression are:

1) the discounted value of the timber harvest, and

2) the present value of an annual cost equal to - the rent on the land minus - a net revenue equal to the annual net revenue.