FOREST RESOURCE MANAGEMENT

by

Marc E. McDill

June 22, 1999
Table of Contents

List of Figures ... -vi-
List of Tables ... -vii-

Chapter 1: Introduction .. 1
 What is Forest Management? .. 1
 The Role of Financial Analysis in Forest Management 3
 Factors Affecting Forest Management Decisions 5
 An Overview of the Text ... 7
 Study Questions .. 7

Chapter 2: Financial Analysis ... 9
 What Is Discounting? .. 9
 What Is Interest? .. 11
 Discounting Formulas .. 14
 The Single Value Formula 14
 Infinite Annual Series .. 17
 Finite Annual Series .. 20
 Infinite Periodic Series .. 23
 Finite Periodic Series ... 26
 Tips for Solving Financial Analysis Problems 27
 Example Problems ... 27
 Significant Digits .. 36
 Study Questions ... 37
 Exercises .. 38

Chapter 3: Financial Analysis with Inflation 40
 What is Inflation? .. 41
 Components of the Interest Rate 42
 Combining Interest Rates .. 44
 Nominal Values and Real Values 46
 Deflating and Inflating .. 47
 Accounting for Inflation When Discounting 49
 Real Changes in Prices and Costs 54
 Study Questions ... 62
 Exercises .. 63

Chapter 4: Financial Analysis Overview .. 66
 Steps in Financial Analysis ... 67
 Selecting an Interest Rate ... 69
 Alternative Financial Criteria for Project Evaluation 70
 Net Present Value (NPV) .. 70
 Benefit/Cost Ratio (B/C) .. 71
The Objective Function .. 204
The Constraints .. 205
The Non-negativity Constraints 206
A General Linear Programming Problem 206
Linear Programming Problem Formulation 207
Graphical Solution of Two-Variable Linear Programming Problems 212
Interpreting Computer Solutions of Linear Programming Problems 219
 Reduced Cost .. 219
 Slack or Surplus .. 220
 Dual Prices (a.k.a. Shadow Prices) 220
 The Fundamental Assumptions of Linear Programming 223
 Study Questions for Linear Programming 224
 Exercises ... 224
 APPENDIX 11.1: Using LINDO to Solve LP Problems. 228
 APPENDIX 11.2: Using Excel to Solve LP Problems 229

Chapter 12: A Basic Harvest Scheduling Model 231
 Planning Periods and the Planning Horizon 232
 The Example Forest ... 234
 Initial Age-Class Distribution 234
 Yield Data .. 234
 Economic Data ... 235
 Land Expectation Value (LEV) Analysis 236
 Long-Term Sustained Yield (LTSY) 236
 Formulating the Example Problem as a Cost Minimization Linear Program 237
 Variable Definitions ... 237
 The Cost-Minimization Objective Function 238
 Area Constraints .. 240
 Harvest Target Constraints 241
 Ending Age Constraints .. 242
 Non-negativity Constraints 246
 The Complete Cost-Minimization Problem Formulation 246
 Interpreting the Solution to the Example Problem 247
 The Optimal Objective Function Value 247
 Interpreting the Optimal Variable Values 248
 Interpreting the Reduced Cost Coefficients 252
 Interpreting the Slack/Surplus Coefficients and the-Dual Prices 252
 Study Questions for the Cost-Minimization Harvest Scheduling Model 254
 Exercises ... 255

Chapter 13: A Profit Maximizing Harvest Scheduling Model 260
 The Profit-Maximization Objective Function 260
 Constraints for the Profit-Maximization Model 261
 Area Constraints ... 262
 Harvest Fluctuation Constraints 262

FOREST RESOURCE MANAGEMENT
List of Figures

Figure 1.1. The management process .. 4
Figure 1.2. Some factors affecting forest management decisions 5
Figure 2.1. Cash flow diagram for $5,000 investment problem 32
Figure 2.2. Cash flow diagram for Tracy Treefarmer problem (part a.) 33
Figure 2.3. Cash flow diagram for Tracy Treefarmer problem (part d.) 35
Figure 3.1. The relationship between the real future value, the nominal future value, and the present value using the values from Example 1 51
Figure 4.1. Net present value of alternative investments at several interest rates. 74
Figure 4.2. Benefit-cost ratios of alternative investments at several interest rates. 75
Figure 5.1. Example of a yield curve .. 82
Figure 5.2. Annual increment, mean annual increment, and compound interest rate of growth for the example yield function in Figure 1 83
Figure 6.1. A series of identical even-aged rotations, illustrating the fundamental assumptions underlying the Land Expectation Value (LEV) 89
Figure 6.2. Cash flow diagram for an example LEV problem 90
Figure 6.3. Yield and Land Expectation Value for the example problem over a range of rotation ages ... 99
Figure 6.4. Marginal analysis of the optimal rotation – marginal costs and marginal benefits of waiting one year to harvest 102
Figure 8.1. Decision tree for a hypothetical stand with one potential thin, three possible times to thin, three possible thinning intensities and three possible rotations, resulting in 30 possible stand prescriptions 133
Figure 9.1. The “ideal” shape of the diameter distribution for an uneven-aged stand ... 140
Figure 9.2. Values of k corresponding to different stand basal areas and different Q factors and regeneration levels by stand basal area ... 146
Figure 9.3. Stand characteristics—k, basal area (BA), and trees per acre (tpa)—for different values of Q .. 147
Figure 10.1. A graph of a sample age-class distribution 167
Figure 10.2. A graph of a sample age-class distribution with three site classes 167
Figure 11.1. Graphical Solution of the Lumber Mill Linear Programming Problem. 213
Figure 11.2. Graphical solution of the Logging Problem 218
Figure 12.1. Illustration of a 30-year planning horizon divided into three 10-year planning periods ... 233
Figure 12.2. LINDO solution to the example cost-minimization harvest scheduling problem .. 248
Figure 13.1. LINDO solution to the example profit-maximization harvest scheduling problem .. 266
Figure 14.1. LINDO solution to the four-period profit-maximization harvest scheduling problem .. 290
Figure 15.1. LINDO solution to the modified four-period profit-maximization model 313
Figure 15.2. LINDO slack, surplus, and dual price report for the example problem 314
List of Tables

Table 3.1. Formulas for deflating, inflating, discounting, and compounding real and nominal future values. .. 50
Table 3.2. Real and inflated cash flows for hybrid poplar example, and present values. .. 53
Table 3.3. Real and inflated cash flows and present values for the hybrid poplar example with a 1% real price increase. 60
Table 3.4. Real and nominal future prices for pulpwood and sawtimber at ages 50 and 80. .. 65
Table 3.5. Real future value, nominal future value, and present value calculations under real price increase and no price increase scenarios. .. 66
Table 4.1. Cash flow summary for alternative investments. .. 73
Table 4.2. NPVs for alternative investments under several discount rates. .. 73
Table 4.3. B/Cs for alternative investments under several discount rates. .. 74
Table 4.4. IRRs for alternative investments. .. 76
Table 5.1. Alternate measures of growth and yield for the example yield function. 85
Table 6.1. Costs and returns for a hypothetical southern pine plantation. .. 96
Table 6.2. Present and future values of costs and revenues associated with the hypothetical southern pine plantation. .. 97
Table 6.3. Effects of changes in economic variables on the financially optimal rotation and the LEV. .. 106
Table 6.4. Results for 300 trees per acre. .. 112
Table 6.5. Results for 500 trees per acre. .. 112
Table 6.6. Economic assumptions for problem 1. ... 113
Table 6.7. Yield assumptions for problem 1. ... 113
Table 7.1. Assumptions for Forest Value example with changing prices. 122
Table 7.2. Yields, MAIs, and LEVs for the new variety of red spruce. .. 126
Table 7.3. Expected yields and LEVs for Pinus nittannii stands. ... 127
Table 7.4. Current-stand yield and economic data for the Toussaint’s natural pine stand. 128
Table 7.5. Expected yields for pine plantations to be established on the Toussaint tract. 129
Table 9.1. Harvest volumes for uneven-aged management cutting cycle and residual basal area example. .. 149
Table 9.2. Forest Values for uneven-aged management cutting cycle and residual basal area example (200 acre tract). .. 150
Table 9.3. Forest Values for uneven-aged management cutting cycle and residual basal area example (200 acre tract). .. 151
Table 9.4. Harvest volumes for uneven-aged management Problem 6. .. 159
Table 9.5. Harvest volumes for uneven-aged management Problem 7. .. 160
Table 9.6. Yield estimates and LEV calculations for future trees that will occupy this site. 161
Table 9.7. Tree Cutting Analysis with Future Values .. 161
Table 9.8.	Individual-tree LEV and rent calculations for Problem 10.	162
Table 9.9.	Future-value analysis of the cutting decision in Problem 10.	162
Table 9.10.	Present-value analysis of the cutting decision in Problem 10.	162
Table 9.11.	Yield Estimates and LEV Calculations for Tree A and Tree B.	163
Table 9.12.	Tree Cutting Analysis with Future Values.	163
Table 9.13.	Tree Cutting Analysis with Present Values	164
Table 10.1.	A sample age-class distribution.	167
Table 10.2.	A sample age-class distribution, broken out by site class.	167
Table 10.3.	Hypothetical yield table with the MAI and the LEV for rotation ages 20 to 70.	172
Table 10.4.	Area, optimal rotation and yield at the optimal rotation for a hypothetical forest with three site classes.	173
Table 10.5.	Initial age-class distribution.	175
Table 10.6.	Target age-class distribution.	175
Table 10.7.	Summary of actions for first decade of area control.	177
Table 10.8.	Example age-class distribution after 10 years.	177
Table 10.9.	Summary of actions for second decade of area control.	178
Table 10.10.	Example age-class distribution over 20 years of area control.	178
Table 10.11.	Projected Age-Class Distribution, Annual Cut and Net Revenue under Area Control.	180
Table 10.12.	Inventory yields for the example problem.	183
Table 10.13.	Calculating the inventory volume in the target forest.	184
Table 10.14.	Calculating the inventory volume in the current forest.	184
Table 10.15.	Example age-class distribution after 10 years of volume control.	186
Table 10.16.	Calculating the forest inventory volume at the beginning of decade 2.	186
Table 10.17.	Projected age-class distribution, inventory, annual cut, and net revenue under volume control using Hundeshagen's formula.	188
Table 10.18.	Growth (PAI) calculation for the example yield function.	191
Table 10.19.	Acres, optimal rotation and yield by site class for long-term sustained yield calculations.	193
Table 10.20.	Age-class distribution.	194
Table 10.21.	Yields, MAI and LEV.	194
Table 10.22.	Projected Age Class Distribution, Annual Cut and Net Revenue under Area Control.	196
Table 10.23.	Projected Age Class Distribution, Annual Cut and Net Revenue under Volume Control (Hundeshagen’s Formula).	197
Table 10.24.	Projected Age Class Volumes, Total Inventory Volume, Ratio of Existing Inventory Volume (V_I) to Regulated Inventory Volume (V_{IR}), and Annual Harvest Volume under Volume Control (Hundeshagen’s Formula).	198
Table 10.25.	Initial age-class distribution for problem 4.	199
Table 10.26.	Yield, PAI, MAI, and LEV for problem 4.	199
Table 10.27.	Area, inventory, and growth of the regulated forest.	200
Table 10.28.	Projected age class distribution, annual cut and net revenue under volume control (Modified Austrian Formula).	200
Table 10.29. Projected inventory volume by age class and harvest volume under volume control (Modified Austrian Formula). .. 201

Table 10.30. Projected inventory growth by age class under volume control (Modified Austrian Formula). ... 201

Table 11.1. Equipment hours needed to produce a cord of wood. 210

Table 11.A2.1. Excel workbook with LP tableau for the lumber mill problem 229

Table 11.A2.2. Excel “Answer Report” for the Lumber Mill Problem 231

Table 11.A2.3. Excel “Sensitivity Report” for the Lumber Mill Problem 231

Table 12.1. Initial acreage by site and age class for the example forest. 234

Table 12.2. Expected yield by site and age class. 235

Table 12.3. Basic Economic Data for the Example Problem. 235

Table 12.4. Land Expectation Values by Site Class for Rotation Ages 20 to 60. 236

Table 12.5. Harvest ages and volumes for each initial age class and harvest period. 239

Table 12.6. A simple age-class distribution. ... 243

Table 12.7. Ending ages for each initial age class and harvest period. 245

Table 12.8. Acres assigned to each prescription, by site class and initial age class. 250

Table 12.9. Acres harvested by period, by site class, and by age at harvest. 250

Table 12.10. Acres and volume harvested, and revenues and costs by period for the example forest. .. 251

Table 12.11. Age-class distribution of the example forest after period 1. 252

Table 12.12. Age-class distribution of the example forest after period 2. 252

Table 12.13. Initial forest acreage by site and age class. 255

Table 12.14. Expected yield by site and age. ... 255

Table 12.15. Initial forest acreage by site and age class. 256

Table 12.16. Expected yield by site and age. ... 256

Table 12.17. Acres assigned to each prescription, by site class and initial age class. 257

Table 12.18. Acres harvested by period, by site class, and by age at harvest. 257

Table 12.19. Acres and volume harvested, and revenues and costs by period for the example forest. .. 258

Table 12.20. Initial forest acreage by site and age class. 258

Table 12.21. Expected yield by site and age class. 259

Table 13.1. Acres assigned to each prescription, by site class and initial age class. 268

Table 13.2. Acres harvested by period, by site class, and by age at harvest. 268

Table 13.3. Acres and volume harvested, and revenues and costs by period for the example forest. .. 269

Table 13.4. Age-class distribution of the example forest after period 1. 269

Table 13.5. Age-class distribution of the example forest after period 2. 269

Table 13.6. Initial forest acreage by site and age class. 271

Table 13.7. Expected yield by site and age. ... 271

Table 13.8. Initial forest acreage by site and age class. 272

Table 13.9. Expected yield by site and age. ... 272

Table 13.10. Acres assigned to each prescription, by site class and initial age class. 273

Table 13.11. Acres harvested by period, by site class, and by age at harvest. 273

FOREST RESOURCE MANAGEMENT
Table 13.12. Acres and volume harvested, and revenues and costs by period for the example forest. .. 274
Table 13.13. Initial forest acreage by site and age class. .. 274
Table 13.14. Expected yield by site and age. ... 275
Table 14.1. Harvest scheduling prescriptions with up to two possible harvests within a 40-year planning horizon. ... 277
Table 14.2. Harvest scheduling prescriptions with up to two possible harvests within a 40-year planning horizon and a minimum rotation of 20 years. 277
Table 14.3. Acres harvested by analysis area and period. .. 289
Table 14.4. Harvest schedule - acres harvested by period and age at harvest. 291
Table 14.5. Summary table: acres and volume harvested and revenues and costs by period. ... 292
Table 14.6. Age-class distribution at the end of period 1. 293
Table 14.7. Age-class distribution at the end of period 2. 293
Table 14.8. Age-class distribution at the end of period 3. 293
Table 14.9. Age-class distribution at the end of period 4. 293
Table 15.1. Age classes of acres assigned to each variable. 297
Table 15.2. Initial acreage by site and age class after accounting for SMZs. 307
Table 15.3. Harvest Schedule — Acres ... 314
Table 15.4. Summary table. ... 315
Table 15.5. Age-class distribution at the end of period 1. 315
Table 15.6. Age-class distribution at the end of period 2. 315
Table 15.7. Age-class distribution at the end of period 3. 316
Table 15.8. Age-class distribution at the end of period 4. 316